Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.348
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637827

RESUMO

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Masculino , Criança , Animais , Camundongos , Humanos , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes Mitocondriais , Proteínas de Homeodomínio/genética , Cerebelo/metabolismo , Autopsia , Metilação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cells ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474350

RESUMO

Fetal alcohol spectrum disorders (FASD) caused by developmental ethanol exposure lead to cerebellar impairments, including motor problems, decreased cerebellar weight, and cell death. Alterations in the sole output of the cerebellar cortex, Purkinje cells, and central nervous system immune cells, microglia, have been reported in animal models of FASD. To determine how developmental ethanol exposure affects adult cerebellar microglia and Purkinje cells, we used a human third-trimester binge exposure model in which mice received ethanol or saline from postnatal (P) days 4-9. In adolescence, cerebellar cranial windows were implanted and mice were aged to young adulthood for examination of microglia and Purkinje cells in vivo with two-photon imaging or in fixed tissue. Ethanol had no effect on microglia density, morphology, dynamics, or injury response. However, Purkinje cell linear frequency was reduced by ethanol. Microglia-Purkinje cell interactions in the Purkinje Cell Layer were altered in females compared to males. Overall, developmental ethanol exposure had few effects on cerebellar microglia in young adulthood and Purkinje cells appeared to be more susceptible to its effects.


Assuntos
Etanol , Transtornos do Espectro Alcoólico Fetal , Gravidez , Masculino , Humanos , Feminino , Animais , Camundongos , Adulto Jovem , Adulto , Idoso , Etanol/farmacologia , Células de Purkinje , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Microglia/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças
3.
Neuroreport ; 35(6): 374-379, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526932

RESUMO

Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and ß-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.


Assuntos
Apoptose , Cerebelo , Glicoproteínas , Animais , Camundongos , Carcinogênese , Cerebelo/metabolismo , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Camundongos Knockout
4.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397008

RESUMO

Although more than 30 different types of neuropeptides have been identified in various cell types and circuits of the cerebellum, their unique functions in the cerebellum remain poorly understood. Given the nature of their diffuse distribution, peptidergic systems are generally assumed to exert a modulatory effect on the cerebellum via adaptively tuning neuronal excitability, synaptic transmission, and synaptic plasticity within cerebellar circuits. Moreover, cerebellar neuropeptides have also been revealed to be involved in the neurogenetic and developmental regulation of the developing cerebellum, including survival, migration, differentiation, and maturation of the Purkinje cells and granule cells in the cerebellar cortex. On the other hand, cerebellar neuropeptides hold a critical position in the pathophysiology and pathogenesis of many cerebellar-related motor and psychiatric disorders, such as cerebellar ataxias and autism. Over the past two decades, a growing body of evidence has indicated neuropeptides as potential therapeutic targets to ameliorate these diseases effectively. Therefore, this review focuses on eight cerebellar neuropeptides that have attracted more attention in recent years and have significant potential for clinical application associated with neurodegenerative and/or neuropsychiatric disorders, including brain-derived neurotrophic factor, corticotropin-releasing factor, angiotensin II, neuropeptide Y, orexin, thyrotropin-releasing hormone, oxytocin, and secretin, which may provide novel insights and a framework for our understanding of cerebellar-related disorders and have implications for novel treatments targeting neuropeptide systems.


Assuntos
Doenças Cerebelares , Neuropeptídeos , Humanos , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Neurônios/metabolismo , Córtex Cerebelar/metabolismo , Neuropeptídeos/metabolismo , Doenças Cerebelares/patologia
5.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38331582

RESUMO

Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Masculino , Camundongos , Metanfetamina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Reforço Psicológico , Cerebelo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia
6.
Transl Psychiatry ; 14(1): 82, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331943

RESUMO

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Assuntos
Cerebelo , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados/metabolismo , Cerebelo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Encéfalo/metabolismo
7.
Sci Rep ; 14(1): 3236, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332227

RESUMO

Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by widespread neuronal death affecting the cerebellum. Cell therapy can trigger neuronal replacement and neuroprotection through bystander effects providing a therapeutic option for neurodegenerative diseases. Here, human control (CNT) and MJD iPSC-derived neuroepithelial stem cells (NESC) were established and tested for their therapeutic potential. Cells' neuroectodermal phenotype was demonstrated. Brain organoids obtained from the Control NESC showed higher mRNA levels of genes related to stem cells' bystander effects, such as BDNF, NEUROD1, and NOTCH1, as compared with organoids produced from MJD NESC, suggesting that Control NESC have a higher therapeutic potential. Graft-derived glia and neurons, such as cells positive for markers of cerebellar neurons, were detected six months after NESC transplantation in mice cerebella. The graft-derived neurons established excitatory and inhibitory synapses in the host cerebella, although CNT neurons exhibited higher excitatory synapse numbers compared with MJD neurons. Cell grafts, mainly CNT NESC, sustained the bystander effects through modulation of inflammatory interleukins (IL1B and IL10), neurotrophic factors (NGF), and neurogenesis-related proteins (Msi1 and NeuroD1), for six months in the mice cerebella. Altogether this study demonstrates the long-lasting therapeutic potential of human iPSC-derived NESC in the cerebellum.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph , Camundongos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Efeito Espectador , Neurônios/metabolismo , Cerebelo/metabolismo , Doença de Machado-Joseph/metabolismo
8.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38383496

RESUMO

Almost all medulloblastomas (MB) of the Wingless/Int-1 (WNT) type are characterized by hotspot mutations in CTNNB1, and mouse models have convincingly demonstrated the tumor-initiating role of these mutations. Additional alterations in SMARCA4 are detected in ∼20% of WNT MB, but their functional role is mostly unknown. We, therefore, amended previously described brain lipid binding protein (Blbp)-cre::Ctnnb1(ex3)fl/wt mice by the introduction of floxed Smarca4 alleles. Unexpectedly, mutated and thereby stabilized ß-catenin on its own induced severe developmental phenotypes in male and female Blbp-cre::Ctnnb1(ex3)fl/wt mice in our hands, including a thinned cerebral cortex, hydrocephalus, missing cerebellar layering, and cell accumulations in the brainstem and cerebellum. An additional loss of SMARCA4 even resulted in prenatal death for most mice. Respective Blbp-cre::Ctnnb1(ex3)fl/wt::Smarca4fl/rec mutants (male and female) developed large proliferative lesions in the cerebellum evolving from E13.5 to E16.5. Histological and molecular analysis of these lesions by DNA methylation profiling and single-cell RNA sequencing suggested an origin in early undifferentiated SOX2-positive cerebellar progenitors. Furthermore, upregulated WNT signaling, altered actin/cytoskeleton organization, and reduced neuronal differentiation were evident in mutant cells. In vitro, cells harboring alterations in both Ctnnb1 and Smarca4 were negatively selected and did not show tumorigenic potential after transplantation in adult female recipient mice. However, in cerebellar explant cultures, mutant cells displayed significantly increased proliferation, suggesting an important role of the embryonic microenvironment in the development of lesions. Altogether, these results represent an important first step toward the unraveling of tumorigenic mechanisms induced by aberrant WNT signaling and SMARCA4 deficiency.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Cerebelo/metabolismo , Mutação/genética , Transdução de Sinais , Microambiente Tumoral
9.
Hum Genet ; 143(3): 211-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396267

RESUMO

Spinocerebellar ataxia subtype 37 (SCA37) is a rare disease originally identified in ataxia patients from the Iberian Peninsula with a pure cerebellar syndrome. SCA37 patients carry a pathogenic intronic (ATTTC)n repeat insertion flanked by two polymorphic (ATTTT)n repeats in the Disabled-1 (DAB1) gene leading to cerebellar dysregulation. Herein, we determine the precise configuration of the pathogenic 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n SCA37 alleles by CRISPR-Cas9 and long-read nanopore sequencing, reveal their epigenomic signatures in SCA37 lymphocytes, fibroblasts, and cerebellar samples, and establish new molecular and clinical correlations. The 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n pathogenic allele configurations revealed repeat instability and differential methylation signatures. Disease age of onset negatively correlated with the (ATTTC)n, and positively correlated with the 3'(ATTTT)n. Geographic origin and gender significantly correlated with age of onset. Furthermore, significant predictive regression models were obtained by machine learning for age of onset and disease evolution by considering gender, the (ATTTC)n, the 3'(ATTTT)n, and seven CpG positions differentially methylated in SCA37 cerebellum. A common 964-kb genomic region spanning the (ATTTC)n insertion was identified in all SCA37 patients analysed from Portugal and Spain, evidencing a common origin of the SCA37 mutation in the Iberian Peninsula originating 859 years ago (95% CI 647-1378). In conclusion, we demonstrate an accurate determination of the size and configuration of the regulatory 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n repeat tract, avoiding PCR bias amplification using CRISPR/Cas9-enrichment and nanopore long-read sequencing, resulting relevant for accurate genetic diagnosis of SCA37. Moreover, we determine novel significant genotype-phenotype correlations in SCA37 and identify differential cerebellar allele-specific methylation signatures that may underlie DAB1 pathogenic dysregulation.


Assuntos
Alelos , Cerebelo , Metilação de DNA , Estudos de Associação Genética , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Feminino , Masculino , Cerebelo/patologia , Cerebelo/metabolismo , Pessoa de Meia-Idade , Adulto , Mutagênese Insercional , Idoso , Idade de Início
10.
Alzheimers Dement ; 20(4): 2589-2605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363009

RESUMO

INTRODUCTION: Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS: Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION: We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS: Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Cerebelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
12.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
13.
Redox Biol ; 70: 103053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340634

RESUMO

Although reactive oxygen species (ROS) are known to have harmful effects in organisms, recent studies have demonstrated expression of ROS synthases at various parts of the organisms and the controlled ROS generation, suggesting possible involvement of ROS signaling in physiological events of individuals. However, physiological roles of ROS in the CNS, including functional roles in higher brain functions or neuronal activity-dependent ROS production, remain to be elucidated. Here, we demonstrated involvement of ROS - 8-NO2-cGMP signaling in motor learning and synaptic plasticity in the cerebellum. In the presence of inhibitors of ROS signal or ROS synthases, cerebellar motor learning was impaired, and the stimulus inducing long-term depression (LTD), cellular basis for the motor learning, failed to induce LTD but induced long-term potentiation (LTP)-like change at cerebellar synapses. Furthermore, ROS was produced by LTD-inducing stimulus in enzyme-dependent manner, and excess administration of the antioxidant vitamin E impaired cerebellar motor learning, suggesting beneficial roles of endogenous ROS in the learning. As a downstream signal, involvement of 8-NO2-cGMP in motor learning and cerebellar LTD were also revealed. These findings indicate that ROS - 8-NO2-cGMP signal is activated by neuronal activity and is essential for cerebellum-dependent motor learning and synaptic plasticity, demonstrating involvement of the signal in physiological function of brain systems.


Assuntos
GMP Cíclico/análogos & derivados , Plasticidade Neuronal , Dióxido de Nitrogênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Nitrogênio/metabolismo , Plasticidade Neuronal/fisiologia , Cerebelo/metabolismo , Memória de Longo Prazo
14.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291334

RESUMO

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Assuntos
Corpo Estriado , Doença de Huntington , Humanos , Animais , Cerebelo/metabolismo , Doença de Huntington/genética , Modelos Animais de Doenças
15.
Int J Dev Neurosci ; 84(2): 122-133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238938

RESUMO

Dietary polyphenol consumption is associated with a wide range of neuroprotective effects by improving mitochondrial function and signaling. Consequently, the use of polyphenol supplementation has been investigated as an approach to prevent neurodevelopmental diseases during gestation; however, the data obtained are still very inconclusive, mostly because of the difficulty of choosing the correct doses and period of administration to properly prevent neurodegenerative diseases without undermining normal brain development. Thus, we aimed to evaluate the effect of naringin supplementation during the third week of gestation on mitochondrial health and signaling in the cerebellum of 21-day-old offspring. The offspring born to naringin-supplemented dams displayed higher mitochondrial mass, membrane potential, and superoxide content in the cerebellum without protein oxidative damage. Such alterations were associated with dynamin-related protein 1 (DRP1) and phosphorylated AKT (p-AKT) downregulation, whereas the sirtuin 3 (SIRT3) levels were strongly upregulated. Our findings suggest that high dietary polyphenol supplementation during gestation may reduce mitochondrial fission and affect mitochondrial dynamics even 3 weeks after delivery via SIRT3 and p-AKT. Although the offspring born to naringin dams did not present neurobehavioral defects, the mitochondrial alterations elicited by naringin may potentially interfere during neurodevelopment and need to be further investigated.


Assuntos
Flavanonas , Sirtuína 3 , Ratos , Animais , Feminino , Gravidez , Ratos Wistar , Sirtuína 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cerebelo/metabolismo , Suplementos Nutricionais , Mitocôndrias/metabolismo , Polifenóis/metabolismo
16.
J Exp Zool A Ecol Integr Physiol ; 341(3): 293-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229259

RESUMO

The donkey's extraordinary capacity to endure substantial loads over long distances while maintaining equilibrium suggests a distinctive cerebellar architecture specialized in balance regulation. Consequently, our study aims to investigate the intricate histophysiology of the donkey's cerebellum using advanced ultrastructural and immunohistochemical methodologies to comprehend the mechanisms that govern this exceptional ability. This study represents the pioneering investigation to comprehensively describe the ultrastructure and immunohistochemistry within the donkey cerebellum. Five adult donkeys' cerebella were utilized for the study, employing stains such as hematoxylin, eosin, and toluidine blue to facilitate a comprehensive histological examination. For immunohistochemical investigation, synaptophysin (SP), calretinin, and glial fibrillary acidic protein were used and evaluated by the Image J software. Furthermore, a double immunofluorescence staining of SP and neuron-specific enolase (NSE) was performed to highlight the co-localization of these markers and explore their potential contribution to synaptic function within the donkey cerebellum. This investigation aims to understand their possible roles in regulating neuronal activity and synaptic connectivity. We observed co-expression of SP and NSE in the donkey cerebellum, which emphasizes the crucial role of efficient energy utilization for motor coordination and balance, highlighting the interdependence of synaptic function and energy metabolism. The Purkinje cells were situated in the intermediate zone of the cerebellum cortex, known as the Purkinje cell layer. Characteristically, the Purkinje cell's bodies exhibited a distinct pear-like shape. The cross-section area of the Purkinje cells was 107.7 ± 0.2 µm2 , and the Purkinje cell nucleus was 95.7 ± 0.1 µm2 . The length and diameter of the Purkinje cells were 36.4 × 23.4 µm. By scanning electron microscopy, the body of the Purkinje cell looked like a triangular or oval with a meandrous outer surface. The dendrites appeared to have small spines. The Purkinje cells' cytoplasm was rich with mitochondria, rough endoplasmic reticulum, ribosomes, Golgi apparatus, multivesicular bodies, and lysosomes. Purkinje cell dendrites were discovered in the molecular layer, resembling trees. This study sheds light on the anatomical and cellular characteristics underlying the donkey's exceptional balance-maintaining abilities.


Assuntos
Cerebelo , Ramos Subendocárdicos , Animais , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Células de Purkinje/metabolismo , Neurônios , Equidae
17.
Exp Brain Res ; 242(3): 619-637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231387

RESUMO

Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.


Assuntos
Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Doenças Renais Císticas , Doenças Renais Policísticas , Retina , Animais , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Domínios C2 , Cerebelo/metabolismo , Cerebelo/anormalidades , Cílios/genética , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mutação/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Retina/anormalidades
18.
Artigo em Inglês | MEDLINE | ID: mdl-38267766

RESUMO

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Assuntos
Doença de Alzheimer , Antígenos CD , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Cerebelo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Córtex Auditivo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Expressão Gênica/genética , Estudos de Casos e Controles
20.
J Neuroimmunol ; 387: 578286, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215583

RESUMO

BACKGROUND: Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). If demyelination is persistent, it will result in irreversible axonal injury and loss. The purpose of the current study was to investigate the effects of treadmill training on myelin proteomic markers and cerebellum morphology in a rat model of cuprizone-induced toxic demyelination. METHODS: Thirty male rats were randomly assigned to five groups (n = 6 per group), consisting of a healthy control group (Control), a cuprizone (CPZ) group, and three exercise training groups: exercise training before and during the CPZ administration (EX-CPZ-EX), exercise training before the CPZ administration (EX-CPZ), and exercise training during the CPZ administration (CPZ-EX). A rat model of CPZ-induced toxic demyelination consisted of feeding the rats cuprizone pellets (0.2%) for 6 weeks. All exercise groups performed a treadmill training protocol 5 days/week for 6 weeks. Levels of Myelin proteolipid protein (PLP), Myelin oligodendrocyte glycoprotein (MOG), axonal injury in the cerebellar tissue, and volume, weight, and length of the cerebellum were determined. RESULTS: Results indicated a significant decrease in PLP and MOG in the CPZ groups compared to the Control group (****p < 0.0001). There was a significant increase in PLP and MOG and a significant decrease in axonal injury in the EX-CPZ-EX group as compared to other CPZ groups (****p < 0.0001), and CPZ-MS and CPZ-EX were not significantly different from one another. However, there were no significant differences between the groups for the volume, weight, or length of the cerebellum. CONCLUSION: Treadmill training improved myelin sheath structural proteins and axonal injury in cerebellar tissue in a rat model of CPZ-induced toxic demyelination.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Ratos , Masculino , Animais , Camundongos , Bainha de Mielina , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Proteômica , Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito , Cerebelo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...